Too hot, too cold, or just right: Can wildfire restore mixed-conifer forests?

Skye Greenler
October 17, 2019
Catastrophic, disastrous, restorative, natural, necessary
Fire prone landscapes need fire to function properly

Lightning and dry fuels = Fire and fire adaptive traits

13,420 Natural Ignitions 2007-2016
Fire influenced landscape at all scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Surface</th>
<th>Understory</th>
<th>Stand</th>
<th>Landscape</th>
</tr>
</thead>
</table>
| Process | - Fuel bed depth
- Nutrient cycling
- Seedbed conditions | - Shrub continuity
- Ladder fuels
- Height to base crown | - Tree density
- Species composition
- Large trees | - Varied landscape
- Natural ‘fire breaks’
- Connectivity |
| Suppression Effects | - ↑ Surface fuels
- Altered germination conditions | - ↑ Understory fuel amount
- ↑ Fuel connectivity | - ↑ Stand density
- Promoted less fire tolerant species | - ↑ Connectivity
- ↓ Heterogeneity |
Fire influenced landscape at all scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Surface</th>
<th>Understory</th>
<th>Stand</th>
<th>Landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuel bed depth</td>
<td>Shrub continuity</td>
<td>Tree density</td>
<td>Varied landscape</td>
</tr>
<tr>
<td></td>
<td>Nutrient cycling</td>
<td>Ladder fuels</td>
<td>Species composition</td>
<td>Natural ‘fire breaks’</td>
</tr>
<tr>
<td></td>
<td>Seedbed conditions</td>
<td>Height to base crown</td>
<td>Large trees</td>
<td>Connectivity</td>
</tr>
<tr>
<td>Process</td>
<td>↑ Surface fuels</td>
<td>↑ Understory fuel amount</td>
<td>↑ Stand density</td>
<td>↑ Connectivity</td>
</tr>
<tr>
<td></td>
<td>- Altered germination conditions</td>
<td>- Promoted less fire tolerant species</td>
<td></td>
<td>- ↓ Heterogeneity</td>
</tr>
<tr>
<td>Suppression Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cannot just love forests back to historical conditions

- Forests developed with thousands of years of natural and indigenous fire
- Cannot easily undo 100+ years of fire suppression
- Management options
 - Mechanical
 - Precise
 - Expensive, sometimes unpopular
 - Fire
 - Natural, sometimes more popular
 - Inexpensive
 - Less control over results
Fire produces varied and uncertain results

Too hot

- Beyond restorative to resetting
- Driven by
 - High surface fuel loads
 - Dense understory fuel
 - High tree density
 - Weather conditions

Too cold

- Fire only consumes surface fuels
- Both wild and prescribed fires
- Driven by
 - Fuels, topography
 - Manager comfort with risk
 - Weather conditions
Influence of burn severity and tree size on mortality

304 CVS (FIA) plots
74 fires
22,419 trees
Influence of burn severity and tree size on mortality

Know:
- Species
- Size
- Alive or dead
- Alive or dead after fire
- Years measured post-fire
- Fire severity

Survey 1: 1992-1997
Survey 2: 1997-2007

Probability

= tree size + burn severity + years post-fire
Influence of burn severity and tree size on mortality

- Fire Tolerant
- Fire Intolerant
Influence of burn severity and tree size on mortality

Ponderosa Pine (PIPO)

12 inch Ponderosa
Fire Severity 200 (RdNBR)
Influence of burn severity and tree size on mortality

- **Douglas-Fir**
 - Fire Severity (RdNBR) vs. Probability of Mortality
 - Lines represent different tree sizes: 6 in, 12 in, 24 in

- **Grand and White Fir**
 - Fire Severity (RdNBR) vs. Probability of Mortality
 - Lines represent different tree sizes: 6 in, 12 in, 24 in

- **Lodgepole Pine**
 - Fire Severity (RdNBR) vs. Probability of Mortality
 - Lines represent different tree sizes: 4 in, 7 in, 10 in
Restorative burn severity

1880

Today

Probability

= tree size + burn severity + years post-fire
Restorative burn severity

• 25 current stands on the Malheur within inventoried roadless areas
 • Ponderosa pine and dry mixed conifer biophysical groups
• At every fire severity value for each stand
 • Calculate mortality probability for each tree (>6 in.)
 • Calculate basal area and density
• Repeat 5 times for each stand
 • Drawing from range of possibilities not mean
• Compare to known historical conditions
Historical Mean ± SD
Restorative burn severity: Ponderosa pine
Looking forward

• Expand across National Forests in eastern Oregon
• Incorporate more intensively managed stands
• Assess how/when prescribed fires are falling within restorative windows
• Web app for managers to model specific stands
• Create wildfire burn severity maps based on where fires were likely restorative
Restoration maps: Rail Fire

MTBS Burn Severity Classes

- Blue = <0.5
- Green = 0.5-0.75
- Yellow = >0.75
- Orange = 0.5-0.75
- Red = <0.5

Restoration Potential Classes

Probability restorative fire:

- Blue = <0.5
- Green = 0.5-0.75
- Yellow = >0.75
- Orange = 0.5-0.75
- Red = <0.5
Final thoughts

Wildfires will continue and some will produce undesirable effects.

Begin to understand where and when fire was restorative, optimize our pre- and post-fire management to capitalize on fire as a restoration tool.

Acknowledge in most places fire alone will not restore both historical density and composition:
- 100+ years of fire suppression cannot be easily ‘undone’
- Trade-offs
- Further mechanical treatments or repeated burning
Thanks!

Chris Dunn, John Bailey, James Johnston, Andrew Merschel, Matt Reilly, Keala Hagmann, and Garrett Meigs

Funding: Oregon State University and Oregon State University College of Forestry